Theory of chemical kinetics and charge transfer based on nonequilibrium thermodynamics.
نویسنده
چکیده
Advances in the fields of catalysis and electrochemical energy conversion often involve nanoparticles, which can have kinetics surprisingly different from the bulk material. Classical theories of chemical kinetics assume independent reactions in dilute solutions, whose rates are determined by mean concentrations. In condensed matter, strong interactions alter chemical activities and create variations that can dramatically affect the reaction rate. The extreme case is that of a reaction coupled to a phase transformation, whose kinetics must depend not only on the order parameter but also on its gradients at phase boundaries. Reaction-driven phase transformations are common in electrochemistry, when charge transfer is accompanied by ion intercalation or deposition in a solid phase. Examples abound in Li-ion, metal-air, and lead-acid batteries, as well as metal electrodeposition-dissolution. Despite complex thermodynamics, however, the standard kinetic model is the Butler-Volmer equation, based on a dilute solution approximation. The Marcus theory of charge transfer likewise considers isolated reactants and neglects elastic stress, configurational entropy, and other nonidealities in condensed phases. The limitations of existing theories recently became apparent for the Li-ion battery material LixFePO4 (LFP). It has a strong tendency to separate into Li-rich and Li-poor solid phases, which scientists believe limits its performance. Chemists first modeled phase separation in LFP as an isotropic "shrinking core" within each particle, but experiments later revealed striped phase boundaries on the active crystal facet. This raised the question: What is the reaction rate at a surface undergoing a phase transformation? Meanwhile, dramatic rate enhancement was attained with LFP nanoparticles, and classical battery models could not predict the roles of phase separation and surface modification. In this Account, I present a general theory of chemical kinetics, developed over the past 7 years, which is capable of answering these questions. The reaction rate is a nonlinear function of the thermodynamic driving force, the free energy of reaction, expressed in terms of variational chemical potentials. The theory unifies and extends the Cahn-Hilliard and Allen-Cahn equations through a master equation for nonequilibrium chemical thermodynamics. For electrochemistry, I have also generalized both Marcus and Butler-Volmer kinetics for concentrated solutions and ionic solids. This new theory provides a quantitative description of LFP phase behavior. Concentration gradients and elastic coherency strain enhance the intercalation rate. At low currents, the charge-transfer rate is focused on exposed phase boundaries, which propagate as "intercalation waves", nucleated by surface wetting. Unexpectedly, homogeneous reactions are favored above a critical current and below a critical size, which helps to explain the rate capability of LFP nanoparticles. Contrary to other mechanisms, elevated temperatures and currents may enhance battery performance and lifetime by suppressing phase separation. The theory has also been extended to porous electrodes and could be used for battery engineering with multiphase active materials. More broadly, the theory describes nonequilibrium chemical systems at mesoscopic length and time scales, beyond the reach of molecular simulations and bulk continuum models. The reaction rate is consistently defined for inhomogeneous, nonequilibrium states, for example, with phase separation, large electric fields, or mechanical stresses. This research is also potentially applicable to fluid extraction from nanoporous solids, pattern formation in electrophoretic deposition, and electrochemical dynamics in biological cells.
منابع مشابه
Comparison of thermodynamics and kinetics of reaction of the ozone with mercury, silver and gold
In this work, we report results of calculations based on the density functional theory of different species metal-ozone, containing mercury, silver and gold. The chosen species range from small molecules and large transition-metal containing ozone with mercury, silver and gold complexes. A comparative analysis of the description of the metal-oxygen bond obtained by different methodologies is pr...
متن کاملOpen-system nonequilibrium steady state: statistical thermodynamics, fluctuations, and chemical oscillations.
Gibbsian equilibrium statistical thermodynamics is the theoretical foundation for isothermal, closed chemical, and biochemical reaction systems. This theory, however, is not applicable to most biochemical reactions in living cells, which exhibit a range of interesting phenomena such as free energy transduction, temporal and spatial complexity, and kinetic proofreading. In this article, a nonequ...
متن کاملSPECTROPHOTOMETRIC STUDY OF THE THERMODYNAMICS AND KINETICS OF CHARGE-TRANSFER COMPLEXATION OF DIBENZO- 18-CROWN-6 WITH IODINE IN CHLOROFORM SOLUTION
The charge-transfer complexation reaction between iodine and dibenzo- 18-crown- 6 (DB18C6) has been studied spectrophotometrically in chloroform solution at different temperatures. The resulting donor-acceptor complex was formulated as (DB 18C6…I )I . The spectrophotometric results , as well as the conductivity measurements, indicated that the gradual release of tiiodide ion from its contac...
متن کاملMESMER: an open-source master equation solver for multi-energy well reactions.
The most commonly used theoretical models for describing chemical kinetics are accurate in two limits. When relaxation is fast with respect to reaction time scales, thermal transition state theory (TST) is the theoretical tool of choice. In the limit of slow relaxation, an energy resolved description like RRKM theory is more appropriate. For intermediate relaxation regimes, where much of the ch...
متن کاملNonequilibrium Thermodynamics of Chemical Reaction Networks: Wisdom from Stochastic Thermodynamics
We build a rigorous nonequilibrium thermodynamic description for open chemical reaction networks of elementary reactions. Their dynamics is described by deterministic rate equations with mass action kinetics. Our most general framework considers open networks driven by time-dependent chemostats. The energy and entropy balances are established and a nonequilibrium Gibbs free energy is introduced...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Accounts of chemical research
دوره 46 5 شماره
صفحات -
تاریخ انتشار 2013